
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Generating Turn-by-turn Instructions for Reliable Cycling
Navigation

Bachelor thesis

Author: Karel Mareš
Thesis supervisor: Doc. Ing. Michal Jakob, Ph.D.
Submission: May 2024





BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

499040 Personal ID number:  Mareš  Karel Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Generating Turn-by-turn Instructions for Reliable Cycling Navigation  

Bachelor’s thesis title in Czech: 

Generování turn-by-turn navigačních instrukcí pro spolehlivou cyklistickou navigaci  

Guidelines: 

Algorithmic methods for generating turn-by-turn navigation instructions for navigation systems represent a long-standing 
yet still not fully resolved problem. The accuracy, unambiguity, and timing of instructions are crucial for the reliable navigation 
of a planned route. This problem is particularly challenging for bicycle navigation due to the density and complexity of the 
road, path, and trail networks on which cycling navigation occurs, and which prevents the direct application of methods 
designed for car navigation, which takes place on structurally simpler networks, and calls for tailored approaches. The 
exploration of such approaches is the goal of this thesis. 
1. Familiarize yourself with the problem of generating instructions for turn-by-turn navigation systems and review existing 
approaches to solving the problem. 
2. Based on a survey of real bicycle routes, identify a library of navigation instructions that is expressive enough to describe 
the complexities of bicycle navigation. 
3. Design an algorithm for generating navigation instructions. As an input, the algorithm takes a cycling route specified as 
a path on the underlying bicycle transport network. As the input, the algorithm produces a sequence of navigation instructions 
that best correspond to the given route. 
4. Implement the proposed algorithm and integrate it with real-world map data describing cycling transport networks. 
5. Evaluate the implemented algorithm on a suitably selected sample of test cycling routes. Assess both the computational 
properties of the proposed method as well as the quality of the produced navigation itineraries. 

Bibliography / sources: 

[1] Golab, A., Kattenbeck, M., Sarlas, G., & Giannopoulos, I. (2022). It’s also about timing! When do pedestrians want to 
receive navigation instructions. Spatial Cognition & Computation, 22(1-2), 74-106. 
[2] Hamburger, K., Röser, F., & Knauff, M. (2022). Landmark selection for route instructions: At which corner of an 
intersection is the preferred landmark located?. Frontiers in Computer Science, 4, 1044151. 
[3] Mackaness, W., Bartie, P., & Espeso, C. S. R. (2014). Understanding Information requirements in “Text Only” pedestrian 
wayfinding systems. In Geographic Information Science: 8th International Conference, GIScience 2014, Vienna, Austria, 
September 24-26, 2014. Proceedings 8 (pp. 235-252). Springer International Publishing. 
[4] Götze, J., & Boye, J. (2015). “Turn Left” Versus “Walk Towards the Café”: When Relative Directions Work Better Than 
Landmarks. AGILE 2015: Geographic Information Science as an Enabler of Smarter Cities and Communities, 253-267. 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Name and workplace of bachelor’s thesis supervisor: 

doc. Ing. Michal Jakob, Ph.D.    Artificial Intelligence Center  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   24.05.2024 Date of bachelor’s thesis assignment:   02.02.2024 

Assignment valid until:   21.09.2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Dr. Ing. Jan Kybic 

Head of department’s signature 
doc. Ing. Michal Jakob, Ph.D. 

Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Author statement

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, 24.5.2024 ........................................
Karel Mareš



Poděkování

Děkuji panu doc. Ing. Michalu Jakobovi, Ph.D. za vedení mé bakalářské práce a za
podnětné návrhy, které ji obohatily. Děkuji rodičům a přátelům za podporu.

Karel Mareš



Název práce:
Generování turn-by-turn navigačních instrukcí pro spolehlivou cyklistickou
navigaci
Autor: Karel Mareš

Studijní program: Otevřená informatika
Obor: Základy umělé inteligence a počítačových věd
Druh práce: Bakalářská práce

Vedoucí práce: Doc. Ing. Michal Jakob, Ph.D.
Department of Computer Science FEE

Abstrakt: Práce zkoumá generování instrukcí pro cyklisty v obohaceném směrovacím grafu
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Chapter 1

Introduction

1.1 Motivation
Opposed to road infrastructure for motorized vehicles, the infrastructure for cyclists

is more dense and complicated. Cyclist infrastructure is combination of infrastructure for
motorized vehicles, pedestrians and some road types primary for cyclists. This complex
infrastructure presents opportunity for generation of more advanced instructions. Presen-
tation of these instructions to the cyclist may be affected by outside elements. One of
the elements are weather conditions. Reading from a display during sunny day can be as
challenging as using the display during rainy day. Another element is ambient sound and
listening to instructions, without headphones, during heavy traffic may be challenging.
Other type of limitation is battery life of a navigating device. With the rise of headphones
using surround sound and bone conducting technologies, providing auditory information
may be beneficial opposed to displaying them. Auditory instructions carry higher risk
of misinterpretation without the visual presentation and therefore should be as clear as
possible.

Many nowadays research papers are based on data instruction generation using land-
marks. Although in some areas are information about landmarks are updated quite fre-
quently, in some areas with less population or less frequent visits from tourists this data
about landmarks can be outdated. Roads do not change that frequently and in some sit-
uations, with no landmark nearby or really outdated dataset, navigation based purely on
roads and paths could be used instead. Some road types are more significant and are more
noticeable and could be used as a reference point.

1.2 Aim of this paper
This paper researches instruction generation in a routing graph composed of multiple

infrastructures and the risk of misinterpreting them. Our goal is to generate instruction
based only on enriched routing graph without using any landmarks.

1





Chapter 2

Related work

The development of cycling navigation systems combines understanding of geographic
information, route planning algorithm and interface design. This section reviews current
state of development in these areas and ideas from other research papers.

Cognitive approach to spatial communication is important, because understanding how
humans communicate directions and other types of spatial information is fundamental to
design effective system for instruction generation. The cognitive approach to the spatial
information communication, discussed in article [1] by Michel Denis provides analysis of
mental processes behind route description and user friendly instructions. This paper by
Michel Denis emphasizes the role of mental imagery linked to following route descriptions
and instruction enhancement by linking this visual imagery with ‘mental maps’, which,
according by the article, cyclists naturally form. The study also highlights importance of
linguistic structure of instruction and selection of reference points so the user to reduce
redundancy and to refer to permanent landmarks.

Another paper [2] by Jakub Krukar takes similar approach to instruction generation
based on landmarks, which are more intuitive for cyclists compared to distance-based
instructions and as previous paper, from Michel Denis, this paper researches landmark
identification and significance of these landmarks to the user. This landmark-based method
used with the cognitive processing of spatial information helps the usability of navigational
systems for cyclists. Article [3] then researches landmark selection more in depth and
suggests which landmarks people find most helpful. Study’s experiment reveals that
participants prefer landmarks on the side of the road onto which they need to turn.

Study by Rousell and Zipf [4] claims that the arrival of location-aware smartphones has
started the development of pedestrian navigation that prioritizes landmarks over distance
and road names. Using these reference points aids users even when GPS accuracy is low.
This statement is supported by article [5], where their experiments resulted in favor of a
landmark-based approach, as it is easier for users to adapt to instruction structure.
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4 Chapter 2. Related work

The article [6] states that not only landmarks are important for good route description
and in less familiar places landmarks are mentioned even in places other than decision
locations.

Selection of appropriate landmarks is not trivial, the article [7] describes importance
of a landmark and how to measure their salience. The salience can be calculated based on
visibility, shape, importance and it’s structure (like intersections).

However landmarks may not always be available. Research article [8] explores possi-
bility of using street names instead of landmarks. Advantage of this approach is that the
street plates are placed at convenient places. But these street plates might not always be
visible or known.

Focus of this paper is on description of a road limited only to information about the
structure of a routing graph and it’s road types. We have not found many papers on this
topic, so we will use ideas from landmark-based instruction generation, which will serve
as a foundation for our work.



Chapter 3

Problem specification

We focus on generating instructions for in a enriched routing graph containing only
information about road structure and road types for a given path. We want to ensure
that the user does not deviate from the route and that the generated instructions have
low ambiguity and therefore are less likely to be misinterpreted. In this section we define
terms, which are necessary to provide insight into the algorithmic instruction generation.

3.1 Enriched routing graph
Data can be represented as a directed graph and we assign a point in the Euclidean

space R2 to each node.

3.1.1 Space

Majority of maps represent data in two dimensions. We define our map objects space
as Euclidean space R2. As distance function 𝑑(𝑥, 𝑦) for two points 𝑥, 𝑦 ∈ R2, we will use
haversine formula (denoted in G). The x represents longitude and y latitude.

3.1.2 Routing graph

In this space we use a routing graph to represent road network infrastructure.

5



6 Chapter 3. Problem specification

Definition 3.1.1. Directed graph is a tuple (V, E, f, g), where:

• 𝑉 is a set of nodes

• 𝐸 ⊂ {𝑒 = (𝑢, 𝑣)|(𝑢, 𝑣) ∈ 𝑉 } is a set of oriented edges

– u is is start node (denoted 𝑆𝑁(𝑒) = 𝑢)

– v is is end node (denoted 𝐸𝑁(𝑒) = 𝑣)

• function 𝑔 : 𝑉 → R2 assigns point 𝑝 ∈ R2 to every node 𝑣 ∈ 𝑉

• function ℎ assigns a set of points in Euclidean space R2

ℎ(𝑒) = {𝛼 · 𝑔(𝑆𝑁(𝑒)) + (1 − 𝛼) · 𝑔(𝐸𝑁(𝐸)) | 𝛼 ∈ [0, 1]} ∀𝑒 ∈ 𝐸

This representation allows us to traverse between nodes and select nearby edges.
Distance between two edges is defined as minimal distance between any two nodes of
opposite edges.

Definition 3.1.2. Distance between two edges 𝑒1 = (𝑢1, 𝑣1), 𝑒2 = (𝑢2, 𝑒2) ∈ 𝐸:

𝑑(𝑒1, 𝑒2) = min{𝑑(𝑢1, 𝑢2), 𝑑(𝑢1, 𝑣2), 𝑑(𝑣1, 𝑣2), 𝑑(𝑣1, 𝑢2)}

Definition 3.1.3. Outgoing edges 𝑂(𝑣) for some node 𝑣 ∈ 𝑉 is a set 𝑂(𝑣) = {𝑒 | 𝑆𝑁(𝑒) =
𝑣 | 𝑒 ∈ 𝐸}

Definition 3.1.4. ingoing edges 𝐼(𝑣) for some node 𝑣 ∈ 𝑉 is a set 𝑂(𝑣) = {𝑒 | 𝐸𝑁(𝑒) =
𝑣 | 𝑒 ∈ 𝐸}

Definition 3.1.5. Neighboring nodes 𝑁(𝑢) = {𝑣 | 𝑆𝑁(𝑒) = 𝑢 ∧ 𝐸𝑁(𝑒) = 𝑣} for 𝑢 ∈ 𝑉 ,
where 𝑒 ∈ 𝐸, is a set of nodes which are connected by by oriented edge starting in node 𝑢.

3.1.3 Features

Each edge can hold additional information, which could be used for instruction gener-
ation.

Definition 3.1.6. The set 𝐹𝑒 is a set of all possible features of all edges.

Definition 3.1.7. Feature function 𝑓𝑒(𝑒𝑖) : 𝐸 → 𝐹 𝑛
𝑒 assigns set of features to each node

𝑒 ∈ 𝐸.
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3.1.4 Nearby significant edges

Some edges might be used as a reference point to other edges and therefore we define
significance function.

Definition 3.1.8. Significance function 𝑠(𝑒) : 𝐸 → R assigns a significance based on
features 𝑓𝑒(𝑒𝑖) to the edge 𝑒𝑖 ∈ 𝐸

And with significance function, we can define nearby edges, which significance is lower
or higher.

Definition 3.1.9. Nearby more significant edges 𝑆𝐷(𝑒) = {𝑒𝑜 | 𝑑(𝑒, 𝑒𝑜) <= 𝐷 ∧ 𝑠(𝑒) >

𝑠(𝑒𝑜)} is a set of edges, where 𝑒, 𝑒𝑜 ∈ 𝐸 and 𝐷 is a maximal distance.

Definition 3.1.10. Nearby less significant edges 𝑠𝐷(𝑒) = {𝑒𝑜 | 𝑑(𝑒, 𝑒𝑜) <= 𝐷 ∧ 𝑠(𝑒) <

𝑠(𝑒𝑜)} is a set of edges, where 𝑒, 𝑒𝑜 ∈ 𝐸 and 𝐷 is a maximal distance.

3.1.5 Edge visibility

To use some edges as reference points, we might need to know if the edge 𝑒𝑣 ∈ 𝐸

is visible from the edge 𝑒 ∈ 𝐸. ℎ(𝑒) is essentially line segment we can define orthogonal
projection of a point onto the edge 𝑒 and determine if the projection exists.

Definition 3.1.11. Orthogonal projection 𝑝𝑟𝑜𝑗𝑒(�⃗�) of �⃗� ∈ R2 onto edge 𝑒 ∈ 𝐸 is a
function representing orthogonal projection onto a affine space prescribed by parametric
function ℎ𝑎𝑓𝑓𝑖𝑛𝑒(𝛼) = 𝛼 · 𝑔(𝑆𝑁(𝑒)) + (1 − 𝛼) · 𝑔(𝐸𝑁(𝐸)).

• If 𝛼 ∈ [0, 1] then the projection exists.

• If 𝛼 /∈ [0, 1] the projection does not exist.

If the projection of some point ℎ(𝑒𝑣) exist, then there might be some edges between
which would obstruct the projection onto edge 𝑒. To determine, if there is a another edge
between, we need to determine some orientation in the space R2. We can use direction of the
line segment, representing edge 𝑒𝑗 . The direction of edge is 𝑑𝑖𝑟(𝑒) = 𝑔(𝐸𝑁(𝑒))−𝑔(𝑆𝑁(𝑒))
and to get side of any point we can use determinant and the knowledge, that it represents
oriented volume of parallepiped between vectors.

Definition 3.1.12. Edge 𝑒𝑖 ∈ 𝐸 is on the left of edge 𝑒𝑗 ∈ 𝐸 if:
∀𝑥 ∈ ℎ(𝑒𝑖) : det(𝑑𝑖𝑟(𝑒𝑗)(𝑔(𝑆𝑁(𝑒𝑗)) − 𝑥)) < 0

Definition 3.1.13. Edge 𝑒𝑖 ∈ 𝐸 is on the right of edge 𝑒𝑗 ∈ 𝐸 if:
∀𝑥 ∈ ℎ(𝑒𝑖) : det(𝑑𝑖𝑟(𝑒𝑗)(𝑔(𝑆𝑁(𝑒𝑗)) − 𝑥)) > 0

Definition 3.1.14. Side is an item from tuple (𝑙𝑒𝑓𝑡, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑔ℎ𝑡).

Now that we have defined orientation in our space, we can determine if orthogonal
projection 𝑝𝑟𝑜𝑗𝑒(�⃗�) for any point form 𝑒𝑣 is visible.
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Definition 3.1.15. Consider edge 𝑒 ∈ 𝐸, 𝑒𝑣 | 𝑒 ̸= 𝑒𝑣 and set of edges, 𝑃 = {𝑝1, . . . , 𝑝𝑛 |
𝑝𝑖 ∈ 𝐸 ∖ {𝑒, 𝑒𝑣}} is a set of edges on the same side as 𝑒𝑣. Set 𝑃𝑝𝑜𝑖𝑛𝑡𝑠 = ⋃︀

𝑝𝑖
{𝑥 | 𝑥 ∈

ℎ(𝑝𝑖) ∧ ∃𝑝𝑟𝑜𝑗𝑒(𝑥)} is a set of all points from each edge 𝑒 ∈ 𝑃 , for which exists projection
onto edge 𝑒.
Visible edge 𝑒𝑣 from edge 𝑒 is an edge for which applies at leas one of these rules:

• Exists 𝑝𝑟𝑜𝑗𝑒(𝑥) and 𝑝𝑟𝑜𝑗𝑒(𝑦) does not

• ∃𝑥 : 𝑝𝑟𝑜𝑗𝑒(𝑥) ̸= 𝑝𝑟𝑜𝑗𝑒(𝑦)

• ∃𝑥 : 𝑑(𝑥, 𝑝𝑟𝑜𝑗𝑒(𝑥)) < 𝑑(𝑦, 𝑝𝑟𝑜𝑗𝑒(𝑦))

where 𝑥 ∈ ℎ(𝑒𝑣) and 𝑦 ∈ 𝑃𝑝𝑜𝑖𝑛𝑡𝑠

In other words we want to know if exists any point from 𝑒𝑣 for which orthogonal
projection is unique or if this point is closest, with regards to other edges.

3.2 Angles between edges and their orientation
To get angle between two edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 we need to get vectors �⃗� = 𝑔(𝐸𝑁(𝑒𝑖)) −

𝑔(𝑆𝑁(𝑒𝑖)) and �⃗� = 𝑔(𝐸𝑁(𝑒𝑗)) − 𝑔(𝑆𝑁(𝑒𝑗)).

Definition 3.2.1. Angle between two edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 is 𝑎𝑛𝑔𝑙𝑒(𝑒𝑖, 𝑒𝑗) = min{𝜃1, 𝜃2},
where

𝜃1 = arccos �⃗� · �⃗�

‖�⃗�‖·‖�⃗�‖

and
𝜃2 = arccos −�⃗� · �⃗�

‖−�⃗�‖·‖�⃗�‖

Using law of cosines we can get oriented angle between ingoing edge and outgoing edge.
Because with law of cosines, we can get angle only up to 180∘, we need to determine on
which side the end of the outgoing vector is, with regards to ingoing edge. If the end is on
the right side, we calculate complementary angle.

Definition 3.2.2. Oriented angle between edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 is:

𝑎𝑛𝑔𝑙𝑒𝑜(𝑒𝑖, 𝑒𝑗) =

⎧⎨⎩𝜃 det(𝑢𝑣) ≤ 0

360 − 𝜃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where
𝜃 = arccos(‖�⃗�‖2+‖�⃗�‖2−‖�⃗� + �⃗�‖2

2‖�⃗�‖‖�⃗�‖
)

When generating instructions and determining right maneuvers, we need orientation
and length of edges.
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Definition 3.2.3. Function 𝑜𝑟𝑖𝑒𝑛𝑡(𝑒) = �⃗�
|�⃗�| | �⃗� = 𝑔(𝐸𝑁(𝑒))−𝑔(𝑆𝑁(𝑒)) assigns orientation

to each edge 𝑒 ∈ 𝐸.

Definition 3.2.4. Function 𝑙𝑒𝑛(𝑒) = 𝑑(𝑔(𝐸𝑁(𝑒)), 𝑔(𝑆𝑁(𝑒))) assigns length of each edge
𝑒 ∈ 𝐸.

3.3 Route
Result of our work is a list of instructions describing a path in routing graph.

3.3.1 Path

Definition 3.3.1. Path 𝑃 in oriented graph 𝐺 = (𝑉, 𝐸) is a sequence of nodes and edges
𝑃 = (𝑣1, 𝑒1, . . . , 𝑒𝑛−1, 𝑣𝑛), where:

• 𝑣𝑖 ∈ 𝑉

• 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) | 𝑒𝑖 ∈ 𝐸

• 𝐸𝑁(𝑒𝑖) = 𝑆𝑁(𝑒𝑖+1) ∀𝑖 ∈ [1, . . . , 𝑛 − 1]

For convenience we will might use only the sequence of edges: 𝑃 = (𝑒1, . . . , 𝑒𝑛−1)

3.3.2 Instruction

Instruction is an object containing text information and is a way to present how to get
to certain point. This instruction is presented as a text information and can be combination
of maneuver and additional information. Sequence of such instructions then also describes
how to get from one point to another.
Maneuver is the most important part of any instruction and represents reorientation in
space.

Definition 3.3.2. Maneuver m between two edges 𝑒𝑖 and 𝑒𝑗 is an item from set of ma-
neuvers

𝑀 = {𝑠ℎ𝑎𝑟𝑝_𝑙𝑒𝑓𝑡, 𝑙𝑒𝑓𝑡, 𝑠𝑙𝑖𝑔ℎ𝑡_𝑙𝑒𝑓𝑡, 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑠ℎ𝑎𝑟𝑝_𝑟𝑖𝑔ℎ𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑠𝑙𝑖𝑔ℎ𝑡_𝑟𝑖𝑔ℎ𝑡}

and is presented as a part of text describing direction.

Definition 3.3.3. Fitness of a maneuver 𝑓𝑖𝑡𝑚(𝑥) : R → R is a function evaluating
geometrical fitness of maneuver 𝑚 ∈ 𝑀 based on angle 𝑥.

In some cases we can use different set of maneuvers, if the conditions for these ma-
neuvers are satisfied. In case of advanced maneuvers, we can use them when crossing or
joining road.
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Definition 3.3.4. Advanced maneuver 𝑚𝑎 between two edges 𝑒𝑖 and 𝑒𝑗 is an item from
set of maneuvers

𝑀𝑎 = {𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑗𝑜𝑖𝑛, 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒, 𝑔𝑒𝑡_𝑜𝑛_𝑜𝑡ℎ𝑒𝑟_𝑠𝑖𝑑𝑒}

and is presented as a part of text describing direction.

Definition 3.3.5. Decision instruction at intersection 𝑣 of edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 is a tuple

𝐼𝐷
(𝑒𝑖,𝑒𝑗) = (𝑓(𝑒𝑖), 𝑓(𝑒𝑗), 𝑆𝐷(𝑒𝑖), 𝑆𝐷(𝑒𝑗), 𝑚)

3.3.3 Decision point

User does not need to be notified at every intersection (node in a routing graph). If
the user continues straight along same path or there is only one outgoing edge, the user
is most likely to continue without any instruction.

Definition 3.3.6. Continuation is an instruction which does not need to be presented, be-
cause the user is most likely to to execute maneuver 𝑚, without any instruction, correctly.
We will call this continuation rule.

Continuation rule is can be applied at intersection 𝑛 if there is only one maneuver avail-
able or if we do not change orientation or road. Therefore we define term for consequent
edges. This term will allow us to perceive larger segments of roads.

Definition 3.3.7. Consecutive edge for edge 𝑒 ∈ 𝐸 in a graph 𝐺, denoted 𝑐(𝑒), is a
sequence of edges and non-repeating nodes 𝑃 = (𝑣1, 𝑒1, . . . , 𝑒𝑛−1, 𝑣𝑛), where 𝑣𝑖 is connected
only to 𝑣𝑖−1 and 𝑣𝑖+1 ∀𝑖 ∈ [2, 𝑛 − 1] and for some 𝑖 ∈ [1, 𝑛] : 𝑒𝑖 = 𝑒.

Definition 3.3.8. Decision point at intersection 𝑣 is point, where the continuation rule
would not be applied.

3.3.4 Edge aggregation

For better instruction generation and easier referencing of more significant edges we
define term Aggregated edge. Finding appropriate edges to for edge aggregation is
described in sections 4.3 and 5.1. Aggregated edge is theoretical term, introduced by
us, creating links between less significant and more significant edges. Aggregated edge
represents edges with similar orientation and are used for understanding more complex
parts of a routing graph.

Definition 3.3.9. Aggregated edge 𝐴(𝑒) for 𝑒 ∈ 𝐸, 𝑒 ∈ 𝑅, is a tuple (𝑐(𝑒), 𝑐𝑙, 𝑐𝑟), where
𝑐(𝑒) is a consecutive edge to 𝑒 and 𝑐𝑙, 𝑐𝑟 are consecutive edges of less significant edges on
left and right side of 𝑐(𝑒).

Definition 3.3.10. Set of aggregated edges 𝐴 = {𝐴(𝑒) | 𝑒 ∈ 𝑅}.
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Definition 3.3.11. Function 𝑎(𝑒) : 𝐸 → {𝐴} assigns to each edge 𝑒 ∈ 𝐸 set of aggregated
edges.

Definition 3.3.12. Function 𝑟𝑜𝑢𝑡𝑒𝑎𝑔(𝑃 ) assigns to each path 𝑃 a sequence of aggregated
edges (𝐴1, . . . , 𝐴𝑛).

Definition of aggregated edges will help us with further filtering of decision points. We
define ambiguity of maneuver 𝑚 between two aggregated edges as:

Definition 3.3.13. Risk function 𝑎𝑚𝑏𝑚(𝐴𝑐, 𝐴𝑛, 𝐴𝑠
𝑜, 𝑒𝑖, 𝑒𝑗) calculates ambiguity of mis-

interpretation of maneuver 𝑚 ∈ 𝑀 between edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 and aggregated edges
𝐴𝑐, 𝐴𝑛 ∈ 𝐴, where 𝑒𝑖 is contained in 𝐴𝑐 and 𝑒𝑗 is contained in 𝐴𝑛. 𝐴𝑠

𝑜 represents set
of nearby aggregated edges, which are considered as ‘dangerous’ and could be mistook for
𝐴𝑛.

3.3.5 Route description

Now that we have defined path 𝑃 = (𝑒1, . . . , 𝑒𝑛) and set of maneuvers 𝑀 we can define
term route, which describes maneuvers between each pair of consequent edges (𝑒𝑖, 𝑒𝑖+1).

Definition 3.3.14. Route is a sequence 𝑅 = (𝑒1, 𝑚1, 𝑒2, 𝑚2 . . . , 𝑒𝑛).
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3.4 Objective
Main objective of this thesis is generation of reliable instructions in enriched routing

graph for some set path 𝑃 . Generation of instruction at decision point 𝑣 is based on finding
optimal instruction with great fitness of maneuver 𝑚 and low ambiguity.
For sequence of edges

𝑃 = (𝑒1, . . . , 𝑒𝑝)

we get sequence of aggregated edges

𝑟𝑜𝑢𝑡𝑒𝑎𝑔(𝑃 ) = (𝐴1, . . . , 𝐴𝑔)

and route
𝑅 = (𝑒1, 𝑚1, . . . , 𝑒𝑝)

We want to find sequence of maneuvers (𝑚, . . . , 𝑚𝑝−1), such that for each maneuver 𝑚

fitness 𝑓𝑖𝑡𝑚𝑖(𝑒𝑖, 𝑒𝑖+1) is maximal and ambiguity of instruction

𝑎𝑚𝑏𝑚𝑖(𝐴𝑖, 𝐴𝑖+𝑖, 𝐴𝑠
𝑖 , 𝑒𝑖, 𝑒𝑖+1)

is bellow some threshold.
We can assume sum of all 𝑓𝑖𝑡𝑚𝑖(𝑒𝑖, 𝑒𝑖+1) as combined fitness

𝑓𝑖𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑒1, 𝑚1, . . . , 𝑒𝑝) =
𝑝−1∑︁
𝑖=1

(𝑓𝑖𝑡𝑚𝑖(𝑒𝑖, 𝑒𝑖+1))

and represent this problem as a optimization problem, where we want to find some
𝑓𝑖𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = min(𝑓𝑖𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑒1, 𝑚1, . . . , 𝑒𝑝)). Therefore our optimal sequence of maneu-
vers (𝑚1, . . . , 𝑚𝑝−1) can be found as:

(𝑚𝑜1 , . . . , 𝑚𝑜𝑝−1) = arg min(𝑓𝑖𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑒1, 𝑚1, . . . , 𝑒𝑝))

subjected to
∀𝑖 ∈ (1, . . . , 𝑝 − 1) : 𝑎𝑚𝑏𝑚𝑖(𝐴𝑖, 𝐴𝑖+𝑖, 𝐴𝑠

𝑖 , 𝑒𝑖, 𝑒𝑖+1) < 𝛾𝑟

where 𝐴𝑖 is referenced aggregated edge by 𝑒𝑖, 𝐴𝑖+1 is referenced aggregated edge by 𝑒𝑖+1,
𝐴𝑠

𝑖 is a set of nearby aggregated edges and 𝛾𝑟 is a threshold for ambiguity.



Chapter 4

Approach

In this section we will describe our approach to the problem of instruction generation
for cyclists.

4.1 Data representation
Data are represented as an enriched routing graph, where feature function 𝑓(𝑒) ∀𝑒 ∈ 𝐸

assigns these values:

• Road type

• Cycle infrastructure

• Surface

• Number of Lanes

– Edge on a map is represented as polygonal chain.

• Whether or not it is:

– Oneway

– Roundabout

– Pavement

All of the enum types are listed in Appendix A. Edges are combination of 3 infrastruc-
tures. First being infrastructure for motorized vehicles, second being infrastructure for
pedestrians and third being a infrastructure meant purely for cyclists. Having a graph
composed of multiple infrastructures creates in some areas very dense sections of graph in
which generation of sensible instructions without the knowledge of relations between edges
is very difficult. Discovering these relations will help with generation of more advanced
instructions and help with finding decision points.

13
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Figure 4.1: Routing graph

4.2 Separating infrastructures
We can separate these infrastructures by their road type and create several routing

graphs. Separation of infrastructures will help us evaluate significance function 𝑠(𝑒), be-
cause some intersection of nodes might include edge 𝑒 ∈ 𝐸, which is of really low signif-
icance and probability of disregarding the road by the user is really high and therefore
would have low impact on ambiguity of particular maneuver.

• Edge types which represent infrastructure for vehicles:

𝑅𝑡𝑦𝑝𝑒𝑠 = {PRIMARY, SECONDARY, TERTIARY,

SERVICE, RESIDENTIAL}

• Edge types which represent infrastructure for pedestrians and cyclists near 𝑅𝑡𝑦𝑝𝑒𝑠:

𝑃𝑡𝑦𝑝𝑒𝑠 = {𝐶𝑌 𝐶𝐿𝐸𝑊𝐴𝑌, 𝐹𝑂𝑂𝑇𝑊𝐴𝑌, 𝐶𝑅𝑂𝑆𝑆𝐼𝑁𝐺}

• Other edges:
𝑂𝑡𝑦𝑝𝑒𝑠 = {𝑜|𝑜 /∈ 𝑅 ∧ 𝑜 /∈ 𝑃}
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This separation based on road types creates 3 distinct sets:

• 𝑅 = {𝑒 | 𝑒 ∈ 𝑆 ∧ 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒) ∈ 𝑅𝑡𝑦𝑝𝑒𝑠}

• 𝑃 = {𝑒 | 𝑒 ∈ 𝑆 ∧ 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒) ∈ 𝑃𝑡𝑦𝑝𝑒𝑠}

• 𝑂 = {𝑒 | 𝑒 ∈ 𝑆 ∧ 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒) ∈ 𝑂𝑡𝑦𝑝𝑒𝑠}

Significance of edges is then set to:

𝑠(𝑜) ≤ 𝑠(𝑎) < 𝑠(𝑟) ∀𝑜, 𝑎, 𝑟 | 𝑜 ∈ 𝑂, 𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅

Values of significance function are based on easier recognition of the road type. More
frequently used road types closer to the infrastructure for vehicles have higher chance to
be maintained and used more frequently, which increases chance, that the road is still
visible or accessible.
Each set then represents routing sub-graph. By this separation, we might create more
consecutive edges, which then represent larger segment of a road, this will reduce number
of decision points and therefore filter instructions, which might be deemed unnecessary. As
seen in Figure 4.2 crossing separates the road into more segments, by acknowledging their
different infrastructure and by separation of infrastructures, we can create the consecutive
edge and generating of instruction would be necessary only if the user would have to move
form one infrastructure to another. In Figure 4.2, we can also notice somewhat parallel

Figure 4.2: Consecutive edges

edges. Some of these edges could be referenced as a sidewalk to the road in the middle. This
idea would help to decrease instruction ambiguity, although at the cost of more complex
instruction. Because roads with higher significance are more likely to be recognized we
want to find appropriate edges with higher significance and reference them instead of
referencing a road type, which could be harder to find just as street plates referenced in
article [8].
In top part of Figure 4.3, we can see branching of a footway. If we were to approach this
intersection from the right of the figure without the knowledge of road bellow, we would
be forced to generate instruction to take the footway more on the left. With the knowledge
of road bellow, we could rely on previous reference of this road and we might not be forced
to generate any instruction, if the previous instruction suggested following this road.
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Figure 4.3: Filtering of decision point

4.3 Finding appropriate significant edges
Our goal is to find edges, which could be used as a reference point for a longer period

of time and would copy trajectory of the road on which the user currently is, this would
reduce amount of generated instructions (i.e. idea mentioned in Figure 4.3). Consider set
of more significant edges 𝑆𝐷(𝑒) for some edge 𝑒 ∈ 𝐸. To use significant edge as a reference
point, similarly to landmark-based navigation, the significant edge needs to be visible from
edge 𝑒. However without the knowledge of landmarks and obstacles between roads, the
visibility (defined in 3.1.15) will have to suffice if we pick reasonable distance 𝐷 for 𝑆𝐷(𝑒).
By referencing more significant edges for longer periods of time, further decrease number
of decision points and we will be able to generate minimal amount of instructions, as
instruction generation would be required only if we deviate from the road significantly or
change relative position to the road (meaning changing sides, joining the road or continuing
in opposite direction). This is why we introduced term Aggregated edge. This term
allows us separate instruction generation into two parts and use different instruction sets
based on if the maneuver between two edges are referencing same aggregated edge or not.
Figure 4.4 shows theoretical flowchart for our method of instruction generation.

Figure 4.4: Algorithm
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4.4 Road orientation
To generate maneuver m between two edges, we need to know their orientation. How-

ever the edge might not represent orientation of the road correctly. We also need to consider
real orientation of the user as well as the instruction might be presented earlier and be-
cause of mentioned ‘mind maps‘ [1] user might assume the orientation based on his current
orientation. On the right side of the Figure 4.5 we can see possible decision point on the
left side of the road if we were to approaching this decision point from bellow. Imagine
situation, where we approach this decision point from bellow and we want to turn left.
If we were to calculate the oriented angle between the ingoing edge and outgoing edge
facing slightly to the left, we would get angle approximately 135∘. This could mean in
some cases disorientation of the user, therefore we need find approach, which would find
more approximate orientation of the road. We can calculate more approximate orientation
by taking in account consecutive edge 𝑐(𝑒) = (𝑒1, . . . , 𝑒𝑛) of an edge 𝑒, where we would
assess the orientation of each edge 𝑒𝑖 | 𝑖 ∈ [1, 𝑛] based on distance from the decision point.

Figure 4.5: Edge orientation

4.5 Similarity of roads
Generation of maneuver based only on edge 𝑒𝑖 and edge 𝑒𝑗 might create misleading

maneuver, because there could exist another edge, which wight be too similar if not better
fitting. Therefore we need to find a metric on how two edges are similar to each other
based not only on their geometry, but also on other attributes (such as road type). This
might help us to generate more unambiguous instructions.





Chapter 5

Algorithm implementation

5.1 Edge aggregation
By constructing consecutive edges, for each infrastructure, and having a set of ap-

propriate significant edges for each edge 𝑒 ∈ 𝐸 we can create a structure Aggregated
edge for better navigating and instruction generation. Consider consecutive edge 𝑐(𝑒) =
(𝑒1, . . . , 𝑒𝑛), where all considered edges have same road type. For each edge 𝑒𝑖 ∈ 𝑐(𝑒) we
can find set of less significant edges 𝑠𝐷(𝑒). We will consider only edges, which satisfy 4.3
(they are visible and have similar orientation). Because edge 𝑒 is representation of a line
segment, only condition needed is that the angle between these edges 𝜃 << 90∘. We will
call these significant edges 𝑆 = ⋃︀𝑛

𝑖 𝑠𝐷(𝑒𝑖) | 𝑒𝑖 ∈ 𝑐(𝑒). This set can be then divided into
two subsets:

𝑐𝑙 = {𝑠 ∈ 𝑆 | edge s is on the left of appropriate edge 𝑒𝑖}

𝑐𝑟 = {𝑠 ∈ 𝑆 | edge s is on the right of appropriate edge 𝑒𝑖}

Edges from these two sets don’t need to be connected but the consecutive edge 𝑐(𝑒) may
be used as a reference point. Now we can specify meaning of items in the aggregated edge
definition.

Definition 5.1.1. Aggregated edge 𝐴(𝑒), 𝑒 ∈ 𝑅, is a tuple (𝑐(𝑒), 𝑐𝑙, 𝑐𝑟).

In Figure 5.1 you can see links between edges represented by blue polygons. As you
can see in the Figure 5.1 these aggregated edges create mostly links between edges, which
are in a ‘road-sidewalk’ relation and the user would perceive them as one road, although
the user is able to distinguish them. This helps us with selection of edges when calculating
ambiguity for making maneuver 𝑚 ∈ 𝑀 . Edge aggregation can be time-consuming and
therefore can be calculated beforehand.

19
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Figure 5.1: Edge aggregation

5.2 Instruction generation
To generate sensible instruction, we need to find appropriate maneuver based on ge-

ometry of surrounding edges. In some cases, multiple maneuvers are a viable option and
therefore we need to find maneuver, which is the leas ambiguous, therefore we need to
define functions, which would assess maneuver fitness based on geography and ambiguity
of misinterpretation based on nearby edges.

5.2.1 Maneuver fitness

To get correct maneuver, we need to find the correct oriented angle of ingoing and
outgoin edge

Definition 5.2.1. Function 𝑝𝑜𝑙(𝑒) returns sequence of edges of 𝑐(𝑒) = (𝑒1, . . . , 𝑒𝑛), where
we will consider only edges 𝑒𝑖 | 𝑖 ≥ 𝑗, where 𝑗 is index of 𝑒 in 𝑐(𝑒).

However getting orientation from whole 𝑝𝑜𝑙(𝑒) without any weights might result in
completely different orientation, because we do not know how the 𝑝𝑜𝑙(𝑒) looks like, and
average orientation would not be the solution. One approach is to use weighted average
of orientation for each 𝑒𝑖 ∈ 𝑝𝑜𝑙(𝑒), where weights would depend on combined length of
previous edges. Our interest in orientation based on distance can be represented by any
non-rising function 𝑖(𝑥), where 𝑥 is distance.

Definition 5.2.2. Function 𝑜𝑟𝑖𝑒𝑛𝑡𝑝(𝑒) = ∑︀𝑛
𝑖=1 𝑤𝑖 · 𝑜𝑟𝑖𝑒𝑛𝑡(𝑒𝑖) | 𝑤𝑖 =

∫︀ 𝑙𝑝+𝑙𝑒𝑛(𝑒𝑖)
𝑙𝑝

𝑖(𝑥)𝑑𝑥,
where 𝑙𝑝 is sum of lengths of previous edges, for each 𝑒𝑖 ∈ 𝑝𝑜𝑙(𝑒).
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With correct orientation we can define maneuver fitness. Fitness of a maneuver can be
represented by function 𝑓𝑖𝑡𝑚(𝑥), where 𝑥 = 𝑎𝑛𝑔𝑙𝑒𝑜(𝑒𝑖, 𝑒𝑗) | 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 and 𝑚 ∈ 𝑀 .

Definition 5.2.3. Fitness of a maneuver 𝑓𝑖𝑡𝑚(𝑥) for maneuver 𝑚 ∈ 𝑀 and for oriented
angle 𝑥 is a function defined on 𝑥 ∈ [0, 360).

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑠ℎ𝑎𝑟𝑝_𝑙𝑒𝑓𝑡) = 45∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑙𝑒𝑓𝑡) = 90∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑠𝑙𝑖𝑔ℎ𝑡_𝑙𝑒𝑓𝑡) = 135∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) = 180∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑠𝑙𝑖𝑔ℎ𝑡_𝑟𝑖𝑔ℎ𝑡) = 235∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑟𝑖𝑔ℎ𝑡) = 270∘

• 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑠ℎ𝑎𝑟𝑝_𝑟𝑖𝑔ℎ𝑡) = 315∘

Additionally for convenience we define:

Definition 5.2.4. Fitness of maneuver 𝑚 between two edges 𝑒𝑖, 𝑒𝑗 ∈ 𝐸 is defined as:

𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) = 𝑓𝑖𝑡𝑚(𝑎𝑛𝑔𝑙𝑒𝑜(𝑜𝑟𝑖𝑒𝑛𝑡𝑝(𝑒𝑖), 𝑜𝑟𝑖𝑒𝑛𝑡𝑝(𝑒𝑜)))

where 𝑒𝑜 is opposite edge to edge 𝑒𝑗 .

If we use same function for all maneuvers 𝑚 ∈ 𝑀 only shifted on a x axis, then
we can compare how similar maneuvers are, by subtracting their fitness, and for better
understanding we will normalize fitness of each maneuver to interval [0, 1]. In Figure 5.2
you can see fitness function for each maneuver scaled 100x.
These values are based on Figure 5.3.

Figure 5.2: Maneuver fitness
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Figure 5.3: Orientation

5.2.2 Maneuver ambiguity

In section 4.5, we mentioned, that we need some way of distinguishing roads from each
other. Because of that we define Maneuver ambiguity.

Definition 5.2.5. Ambiguity of maneuver 𝑚 ∈ 𝑀 for edges 𝑒𝑖, 𝑒𝑗 and set of other edges
𝐸𝑜, where 𝑒𝑖, 𝑒𝑗 /∈ 𝐸𝑜 is function

𝑎𝑚𝑏𝑚(𝑒𝑖, 𝑒𝑗 , 𝐸𝑜) =

⎧⎨⎩0 𝐸 = ∅

1 − |(𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) − max{𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑜) | 𝑒𝑜 ∈ 𝐸𝑜})| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ambiguity of maneuver 𝑚 selects most fitting edge 𝑒𝑜 ∈ 𝐸𝑜 and compares it to fitness of
edge 𝑒𝑗 , so this number represents how similar these two edges are in terms of orientation,
the ambiguity is |(𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) − max{𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑜) | 𝑒𝑜 ∈ 𝐸𝑜})|.
Notice, that our fitness function is a normal distribution function. And by our ambiguity
definition relies purely on ambiguity of oriented angles. This means that the optimal
maneuver is maneuver with the lowest ambiguity.

5.2.3 Sectioning of path

Consider given path 𝑃 = (𝑒1, . . . , 𝑒𝑛). We want to select an aggregated edge and use as
longest as possible, because we do not want to flood the user with too much instructions
and the user is most likely to follow road closest to referenced road.
We can then create sections composed of consecutive edge, which reference same aggre-
gated edge, 𝑆 = ((𝑒1, . . . , 𝑒𝑖), (𝑒𝑖+1, . . . , 𝑒𝑖+1+𝑗), . . . ), otherwise denoted 𝑆 = (𝑆𝑖, . . . , 𝑆𝑚).
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Definition 5.2.6. Sectioning 𝑆𝑖 is defined as:

• 𝑆1 is largest possible consecutive sequence of 𝑒1, . . . , 𝑒𝑛, which can reference same
aggregated edge as 𝑒1.

• 𝑆𝑖 is largest possible consecutive sequence of 𝑒𝑗 , . . . , 𝑒𝑛, which can reference same
aggregated edge as 𝑒𝑗 , where 𝑒𝑗 is last non referenced edge by all previous 𝑆𝑗 , where
𝑗 < 𝑖. For 𝑖 ∈ [2, . . . , 𝑚].

This would allow us to separate instruction generation into two parts: instruction
generation inside particular section (IE1) and instruction generation between these sections
(BE2).

5.2.4 Finding appropriate aggregated edges

Some edges with lower significance can be aggregated to multiple consequent edges
and we have to select which aggregated edges 𝑎(𝑒) that we want to address. If we divide
edge 𝑒 into sections 𝑆𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 by visibility (from each section is visible subset of 𝑎(𝑒)), we
can determine if these aggregated edges are consequent. In each visibility section can be
multiple edges, and because of the visibility requirement they are on opposite sides and
in this scenario we can select a more significant edge. If the significance equals then we
select aggregated edge, which is on the same side as previous referenced aggregated edge
with reference to edge 𝑒, because it is more likely, that it is continuation of previous edge.
For longer edge, there can be multiple sections of visibility. After we choose appropriate
aggregated edge for each section, we get sequence of aggregated edges (𝐴(𝑒)1, . . . 𝐴(𝑒)𝑛),
between which reorientation instruction should be generated as well.
In figure 5.4 you can can see sidewalk represented as a consecutive edges. Consider that we
approach this intersection from the bottom sidewalk to the left of the road. Even though
graph does not indicate any path to continue straight, user would most likely continue
straight onto unmarked sidewalk, therefore we need to indicate change of direction and
reorient the user using more significant edges.

Definition 5.2.7. Function 𝑟𝑜𝑢𝑡𝑒𝑎𝑔(𝑃 ) generates optimal sequence of aggregated edges
using sectioning described in 5.2.3 resolves possible link to multiple aggregated edges using
approach described in 5.2.4. For path 𝑃 = (𝑒1, . . . , 𝑒𝑛).

1IE
2BE
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Figure 5.4: Consequent edges problem

5.2.5 IE instruction generation

Because of our strict aggregation requirements (small angle and being closest edge
to more significant edge), there is no possible way to get any closer to addressed sig-
nificant road and we will be using only advanced maneuvers 𝑚𝑎 ∈ 𝑀𝑎, because these
maneuvers then have low probability of misinterpretation. Consider consecutive part of
edges of path 𝑃 , denoted 𝑃𝑎 = (𝑒1, . . . , 𝑒𝑛), which can reference same aggregated edge
𝐴(𝑒) = (𝑐(𝑒), 𝑐𝑙, 𝑐𝑟), for some 𝑒 ∈ 𝐸. Our approach is to notify user, that the orientation
with respect to consecutive edge 𝑐(𝑒) has changed or that he needs to get across the road
and get on the other side (join other set of tuple of 𝐴(𝑒)). In Figure 5.5 we can see a main
road with two adjacent sidewalk and a crossing. Consider that we arrive from the bottom
left side sidewalk and we need to get to the sidewalk on the other side via the sidewalk
and then we can continue in our general direction or in the opposite direction. We need
to inform the user about getting on the other side and about general direction. Algorithm
is presented in Figure 5.6.

5.2.6 BE instruction generation

Instruction generation between aggregated edges is more difficult, because we need
to assess maneuver ambiguity of transfer from one aggregated edge to another and find
appropriate aggregated edges to compare it to.

Ambiguity of aggregated edges

Consider current aggregated edge 𝐴𝑐, next aggregated edge 𝐴𝑛 and set of other ag-
gregated edges 𝐴𝑠

𝑜 = {𝐴𝑜1, . . . , 𝐴𝑜𝑛} As 𝐴𝑠
𝑜 we will then consider set of aggregated edges

which are connected to 𝐴𝑐 by some oriented edge 𝑒 ∈ 𝐴𝑜𝑖 and 𝐴𝑐, 𝐴𝑛 /∈ 𝐴𝑠
𝑜.
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Figure 5.5: IE orientation

Figure 5.6: IE instruction generation
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Definition 5.2.8. Ambiguity of maneuver 𝑚 between aggregated edges 𝐴𝑐 and 𝐴𝑛 with
other connected aggregated edges edges 𝐴𝑠

𝑜 is a function:

𝑎𝑚𝑏𝑚(𝐴𝑐, 𝐴𝑛, 𝐴𝑠
𝑜, 𝑒𝑖, 𝑒𝑗) =

⎧⎨⎩0 𝐴𝑠
𝑜 = ∅

𝑓𝑖𝑡𝑚𝑎𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where

𝑓𝑖𝑡𝑚𝑎𝑥 = max{(1 − |𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) − 𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑜)|)} · 𝛼𝑟(𝑒𝑗 , 𝑒𝑜) · 𝛼𝑑(𝑒𝑗 , 𝑒𝑜)

for all 𝑒𝑜 ∈ 𝐴𝑠
𝑜 and

𝛼𝑟(𝑒𝑗 , 𝑒𝑜) =

⎧⎨⎩1 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒𝑗) = 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒𝑜)

𝛽𝑟 ∈ [0, 1] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛼𝑑(𝑒𝑗 , 𝑒𝑜) = 𝑑𝑑𝑒𝑔𝑟𝑎𝑑𝑖𝑛𝑔(𝑑(𝑔(𝑆𝑁(𝑒𝑗)), 𝑔(𝑆𝑁(𝑒𝑜))))

where 𝑑𝑑𝑒𝑔𝑟𝑎𝑑𝑖𝑛𝑔 is a non-rising function representing our interest in nearby decision point
or other edge from the current decision point and function 𝑟𝑜𝑎𝑑𝑡𝑦𝑝𝑒(𝑒) that assigns a road
type based on features 𝑓(𝑒) to an edge 𝑒 ∈ 𝐸.

Part of formula 1 − |𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) − 𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑜)| represents geometrical ambiguity of
edges 𝑒𝑜 and 𝑒𝑗 . In other words, we take a look at aggregated edge 𝐴𝑜 ∈ 𝐴𝑠

𝑜 and assume
worst possible outcome. In Figures 5.7 and 5.8 we see closer look at intersection of two
roads. If we were to make maneuver ‘turn left’ coming from the bottom onto the left
sidewalk, we would consider three outgoing sections with high significance, because all of
them have sidewalks on the left side and are close to edge, where the maneuver is to be
executed.

Figure 5.7: Intersection
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Figure 5.8: Aggregated intersection

Finding optimal maneuver

We want to find maneuver 𝑚 with low ambiguity and high fitness for current aggregated
edge 𝐴𝑐, next aggregated edge 𝐴𝑛 and set of other aggregated edges 𝐴𝑠

𝑜 = {𝐴𝑜1, . . . , 𝐴𝑜𝑛},
with 𝑒𝑖 being last edge from 𝐴𝑐 and 𝑒𝑗 being first edge from 𝐴𝑛. Consider subset of
maneuvers 𝑚𝑔𝑟𝑒𝑎𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = {𝑚 | 𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗) > 𝛾𝑓 } for 𝑚 ∈ 𝑀 . This subset represents
maneuvers, which would be considered by the user as a possible maneuver, based purely
on geometry. This would of course not suffice and we need to find subset of these ma-
neuvers, which are less ambiguous 𝑚𝑙𝑜𝑤_𝑎𝑚𝑏 = {𝑚 | 𝑎𝑚𝑏𝑚(𝐴𝑐, 𝐴𝑛, 𝐴𝑠

𝑜, 𝑒𝑖, 𝑒𝑗) < 𝛾𝑟} for
𝑚 ∈ 𝑚𝑔𝑟𝑒𝑎𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠. Now we can define term for the least ambiguous maneuver from
𝑚𝑙𝑜𝑤_𝑎𝑚𝑏.

Definition 5.2.9. Optimal maneuver 𝑚 ∈ 𝑚𝑔𝑟𝑒𝑎𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is defined as:

𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝐴𝑐, 𝐴𝑛, 𝐴𝑠
𝑜, 𝑒𝑖, 𝑒𝑗)

⎧⎨⎩∅ 𝑚𝑙𝑜𝑤_𝑎𝑚𝑏 = ∅

arg max𝑚𝑙𝑜𝑤_𝑎𝑚𝑏
(𝑓𝑖𝑡𝑚(𝑒𝑖, 𝑒𝑗)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Optimal maneuver does not need to exist, because it would be too risky to execute.
Therefore we need to find some way reference the orientation.

Using different set of maneuver

Our approach to non existing optimal maneuver is to select an edge, which causes this
ambiguity and present this information to the cyclist. We can find this edge by removing
the edge 𝑒𝑟 from 𝐴𝑠

𝑜 and calculate recalculate the ambiguity without the edge 𝑒𝑟. It this
does not resolve the problem, the intersection is deemed too complex and other sources of
navigating should be used.

Figure 5.9: BE instruction generation
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5.2.7 Instruction joining

Consider list of generated instruction 𝐿 = (𝑑1, 𝑚1, . . . , 𝑚𝑛), where 𝑚 ∈ 𝑀 ∪𝑀𝑎 and 𝑑𝑖

is a distance instruction. We can present each 𝑚𝑖 and 𝑑𝑖+1 as one instruction 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑖.
For each pair 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑖+1, if the distance 𝑑 of instruction 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑖 is lower
than some 𝑑𝑖𝑠𝑡𝑚𝑖𝑛, we can generate new instruction by joining these instructions by ‘and
then’ and replace 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑖 for newly joined instruction. The algorithm is presented in
Figure 5.10.

Figure 5.10: Instruction joining

5.2.8 Instruction presentation

Generated instructions are then presented as in a text form, they are tied to an in-
tersection and by approaching to this intersection the generated instruction should be
presented to the user. The structure of the text instruction can be described by Backus
Naur Form:
< 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 >:= ‘maneuver is too risky’ |< 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑡 >|

< 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑡 > ‘ and then ’ < 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑡 >

< 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑡 >:=< 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 > ’ onto ’ < 𝑟𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 >< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >|
< 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 >< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >

< 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 >:= ‘turn sharp left’ | ‘turn left’ | ‘turn slight left’ | ‘continue straight’ |
‘turn slight right’ | ‘turn right’ | ‘turn sharp right’

< 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 >:= ‘continue’ | ‘continue in the opposite direction’ |
‘get on the other side’ | ‘join the ’ < 𝑟𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 >

< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >:= ‘ ’ | ‘ for ’ < 𝑛𝑢𝑚𝑏𝑒𝑟 >

< 𝑑𝑖𝑔𝑖𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 >::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
< 𝑛𝑢𝑚𝑏𝑒𝑟 >:= ‘0’ |< 𝑑𝑖𝑔𝑖𝑡_𝑛𝑜𝑛𝑧𝑒𝑟𝑜 >|< 𝑛𝑢𝑚𝑏𝑒𝑟 >< 𝑛𝑢𝑚𝑏𝑒𝑟 >

< 𝑟𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 >:= ‘primary road’ | ‘secondary road’ | ‘tertiary road’ | ‘service road’ |
‘path’ | ‘track’ | ‘footway’ | ‘crossing’ | ‘steps’ | ‘cycleway’
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< 𝑠𝑖𝑑𝑒 >:= ‘on the left side of the ’ < 𝑟𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 >|
‘on the right side of the ’ < 𝑟𝑜𝑎𝑑_𝑡𝑦𝑝𝑒 >

Figure 5.11: Instruction generation

5.2.9 Optimal Route description

By defining optimal maneuver and selection of appropriate aggregated edges, we can
generate optimal sequence of instructions describing given path 𝑃 , which maximizes com-
bined fitness featured in 3.4.





Chapter 6

Development of the app

This chapter describes development of resulting application using approach described
in Chapter 4 and Chapter 5. Project is separated into backend and frontend (web UI). Fig-
ure 6.1 shows entire process from acquiring the data to Web application and presentation
of the result.

Figure 6.1: Flowchart of application
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6.1 Backend
Application is developed in java (jdk 17), where we created custom libraries for 2D

linear algebra and edge aggregation. Project uses Jakarta Servlets1 for easy server de-
ployment. Application can be compiled into WAR file2 and then deployed into any server
supporting this file type or Jakarta Servlets. Application was tested in Tomcat3 server
10.1.18.

6.1.1 Building enriched routing graph

Application requires 2 csv files to run. First being list of nodes, containing informa-
tion about node ID and coordinates. Second being list of edges containing information
about road type etc. After providing these two files, enriched routing graph is constructed
and edge aggregation is commenced. Depending on size of the routing graph and hosting
machine, aggregation may take up to several minutes.

6.1.2 Generation of route

Route generation is done by cyclers api4. If communication with the cyclers api fails,
Dijkstra algorithm is deployed.

6.1.3 Interface

Because of the Jakarta Servlets, we provide simple http POST and GET interface.
Returned data contain GeoJSON5 file to visualize the response on a map.

Nodes

GET method on address ‘∖𝑛𝑜𝑑𝑒𝑠’ returns a GeoJSON file containing feature collection
of points with title containing their ID.

Edges

GET method on address ‘∖𝑒𝑑𝑔𝑒𝑠’ returns a GeoJSON file containing feature collection
of lines with an array of features.

1https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/servlets/servlets.html
2https://en.wikipedia.org/wiki/WAR_(file_format)
3https://tomcat.apache.org/
4https://cyclers.tech/
5https://geojson.org/

https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/servlets/servlets.html
https://en.wikipedia.org/wiki/WAR_(file_format)
https://tomcat.apache.org/
https://cyclers.tech/
https://geojson.org/
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Route

POST method on address ‘∖𝑟𝑜𝑢𝑡𝑒’ requires a data in a format

{ data : {
f : fromID ,
t : toID
}

}

where fromID and toID are unique identificator of nodes. This prepares server for route
planning.
Get method on address ‘∖𝑟𝑜𝑢𝑡𝑒’ returns a sequence of edges in a same format as edges
in 6.1.3.

Instructions

POST method on address ‘∖𝑟𝑜𝑢𝑡𝑒’ requires a data in a format

{ data : {
f : fromID ,
t : toID
}

}

where fromID and toID are unique identificator of nodes. This prepares server for route
description.
GET method on address ‘∖𝑟𝑜𝑢𝑡𝑒’ returns a feature collection with this structure:

{" type " : " Fea tu r eCo l l e c t i on " ,
" f e a t u r e s " : [

{" type " : " Feature " ,
" geometry " : { " coo rd ina t e s " : [ l ong i tude , l a t i t u d e ] ,

" type " : " Point "} ,
" p r o p e r t i e s " : {

" t i t l e " : " maneuver d e s c r i p t i o n " ,
" f i t n e s s " : " f i t n e s s va lue s f o r each maneuver " ,
" r i s k " : " r i s k va lue s f o r each maneuver "}} ,

. . .
] }

Polygons

For visualization of aggregated edges, we generate GeoJSON polygons stored in feature
collection. GET method on address ‘∖𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠’ returns a feature collection of polygons.
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6.2 Web application
Our demo web application is developed in Jakarta Server Pages(JSP6) for easy gener-

ation of html code and communication with Jakarta Servlets.

6.2.1 Appearance

Web application is divided into two sections: visualization of the data and informational
menu.

Figure 6.2: Web app

6.2.2 Data visualization

GeoJSON data are visualized using an interactive Mapbox map7, where all the data
(except for initial routing graph) are dynamically generated.

Edge interaction

By clicking at any edge in Mapbox map, we are able to see all the edge features in the
menu on the left.

Instruction interaction

By clicking at any generated instruction presented the geometrical fitness of the ma-
neuver and ambiguity of presented instruction. These values are shown in the menu.

6https://jakarta.ee/learn/specification-guides/
7https://www.mapbox.com/

https://jakarta.ee/learn/specification-guides/
https://www.mapbox.com/
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Figure 6.3: Edge information

(a) Fitness (b) Risk

Figure 6.4: Fitness and ambiguity of an instruction
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6.2.3 Menu sections

Navigation

In the navigation section, you can select numbers of two nodes and then the generated
path together with generated instructions will be visible on the map.

Styling

User can select one of the selected map styles. User can also select what informa-
tion should visualize in ‘Map layers’ section. These layers show information ranging from
provided data, through edge aggregation to generated instructions.



Chapter 7

Evaluation

In this section we will go through results and evaluate the output of the algorithm.

7.1 Selecting hyper-parameters
In our algorithm, we use hyper-parameters, and in this section we will give these

hyper-parameters meaning and explain why we set them to particular value.

7.1.1 Geometrical fitness and ambiguity

In Figure 5.2 you can see normal distribution functions. Each having it’s distinct mean,
which is appropriate to general direction. We assigned same deviation to each normal dis-
tribution function, 𝑁(𝜇, 30). This ensures that the fitness of an oriented angle deviated
more than 90∘ is really low, at the same time fitness of oriented angle deviated less than
45∘ is still considerable and for oriented angle deviating less than 30∘ the fitness is at least
0.5.
When calculating ambiguity we use constant 𝛽𝑠, which is set to ‘0.7’. This can be inter-
preted as changing the oriented angle between two edges by 20∘ and helps with ‘ignoring’
less significant edges, when traversing infrastructure for motorized vehicles.
Function 𝑑𝑑𝑒𝑔𝑟𝑎𝑑𝑖𝑛𝑔, also used in ambiguity calculation, is another normal distribution
function 𝑁(0, 8). This value helps with finding optimal maneuver in more dense parts of
a routing graph. By increasing deviation 𝜎 of the 𝑑𝑑𝑒𝑔𝑟𝑎𝑑𝑖𝑛𝑔, the ambiguity calculation
becomes more aware of surrounding edges and in parts of graph with higher density of
edges, our method becomes unreliable and unusable.
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7.1.2 Fitness and ambiguity thresholds

In Definition 5.2.9 we use maneuvers, which have ambiguity lower than 𝛾𝑟 and geomet-
rical fitness higher than 𝛾𝑓 . We want to ensure orientation shown in Figure 5.3. To ensure
this requirement, we need to find intersection between two neighboring fitness functions,
in our case minimal allowed fitness 𝛾𝑓 would be 32, but we decided to lower this bound to
30, to fight numerical errors.
With similar approach we set 𝛾𝑟 to 75. This helps us with multi-arm intersections without
using topological numbering of edges.

7.1.3 Orientation of consecutive edges

For the interest function used for weighted average orientation in Definition 5.2.2 was
selected normal distribution function 𝑁(0, 15). Other values were too short-sighted or
far-sighted.

7.2 Testing of routes
In this section we will showcase results of our algorithm on few selected roads and

assess the generation of decision and flexibility of our instruction set. The algorithm was
tested in our developed app. All of the shown examples can be recreated in our developed
app.

Route 1 Figure 7.1 displays evaluated route.

Figure 7.1: Route from 291741 to 247682
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Figure B.1 displays first two decision points. First BE instruction being "Turn left onto
service road and continue for 8 meters" caused by intersection of two service roads. Risk
of this instruction in the direction of the maneuver was 0.07 and fitness 0.94, because no
nearby edges with similar description were present. Second being "Get on the footway on
the right side of the road" caused by changing sides in an aggregated edge IE instructions
do not have ambiguity evaluation, because they are too general.

Figure B.2 displays BE distance instruction "continue for 163 meters on the right side
of service road" serving more of a reassuring purpose.

Figure B.3 shows two BE instructions "Continue straight onto crossing and continue
for 17 meters on the right side of primary road" and "Continue straight onto crossing and
continue for 49 meters on the right side of primary road" both caused by intersection of
nodes to the left of the crossing. These instructions should have been represented as one,
but unfortunately we did not have time to implement this feature.

If we change direction of the last maneuver we get instruction "Keep on the right
side and Turn right" seen in Figure B.4. This consecutive edge was aggregated to both
service roads and by great deviation of our orientation was generated this specialized BE
instruction. Note that without the aggregation or awareness of nearby edges, no instruction
would be generated, because the continuation rule would be applied.
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Route 2 Figure 7.2 displays evaluated route. In Figure B.5 you can see two decision

Figure 7.2: Route from 264060 to 26642

points. First being "Turn slight right onto path and continue for 16 meters", which was
generated almost purely on geometrical fitness, because no unambiguous roads are nearby.
Second being "Choose path in the direction of straight closer to your right and continue
for 255 meters", which is a instruction generated by algorithm described in section 5.2.6
because of high ambiguity of these edges.

Route 3 In Figure B.6 we can see a decision point, where our algorithm deemed this
intersection as too dangerous and instruction generation failed.

Route 4 In Figure B.7 (where the cyclist is arriving from the bottom) we can see a
instruction "Turn slight left onto path and continue for 25 meters" presented after "Get on
the righ side of the road", which would not correspond with orientation of the user after
joining the footway on the right.

7.3 Aggregation of edges
Our data consisted of 9034 distinct edges each with two possible orientations. 3388

edges were assigned as edges with the highest significance and therefore used as main
reference points. 2118 edges were able to reference edges with higher significance. Other
edges were not aggregated.
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Discussion

In this section we will discuss the quality of generated instructions and reliability of
the algorithm The results presented in previous section should provide insight into the
advantages and disadvantages of our algorithm.

Where does the algorithm perform well? The instruction generation heavily relies
on edge aggregation and therefore in routing graphs with low variety of edges with different
significance, the algorithm might not perform that well and may not select right decision
points. Therefore the algorithm performs better in urban areas, where there is abundance
of more significant edges.

Where does the algorithm fail? The algorithm in some cases (like in B.7) fails to
generate correct instructions, because the algorithm does not take in account orientation
of the user after instruction generation from another instruction set. Another problem
arises with parts of graph, where there is higher density of edges with same significance
connected in quick succession and high branching. In this scenario, the algorithm generates
too many instructions, because consecutive edges are short.

Is the instruction set appropriate? We used three different instruction sets (IE, BE
and solution for too ambiguous edges). Our instructions are based only on distance and
change of direction. We did not use non-distance based instructions like "take third right".
Use of these instructions would benefit the description of the route (prioritization of these
instruction is mentioned in [4]).
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Is ambiguity great for instruction selection of maneuver? In most cases the
ambiguity does great job at filtering maneuvers, which could be more likely misinterpreted,
however in some cases (like B.5) two roads were too similar and instruction "turn slight
right" could be used. But this problem arises, because we used fitness function of maneuver
for whole 360∘. If we would have restricted fitness function of each maneuver to a particular
interval, then we would not have to compare left side with the right side and therefore
resolve this case with BE instruction.



Chapter 9

Conclusion

We have separated route description into two stages: edge aggregation and generation
of instruction. Edge aggregation can be calculated in advance and therefore not affect
speed of instruction generation. We were able to find sequence of appropriate significant
edges for given path and later use them as a reference points. Instruction generation is
divided into two sections: IE instruction generation and BE instruction generation and
therefore allows usage of different sets of maneuvers, where decision points are dependant
on aggregated edges.

We proposed solution to get more approximate orientation of a road, based on consec-
utive edges, and created a metric for ambiguity of two roads from some intersection, based
on the geometry and road types. Selection of appropriate BE maneuver is influenced on
oriented angle and ambiguity of nearby roads.

Finally we implemented this approach in java application, which can be deployed
in server supporting WAR1 files. And in this application we showcased advantages and
shortcomings of using this algorithm.

Proposed algorithm for instruction generation uses similar technique as landmark-
based instruction generation. It performs well in some areas, but is not robust enough,
because of is using only distances, not referencing surrounding roads more precisely and
being shortsighted.

9.1 Future work
As mentioned above, our solution is not robust enough. Generated instructions lack

information about approaching a decision point and confirmation of execution of correct
maneuver. Information about next decision point is done only by providing distance and
not mentioning possible turns in between. Another improvement would be different type of
aggregation, where edges or nodes could be aggregated by their proximity, and therefore

1https://en.wikipedia.org/wiki/WAR_(file_format)
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different set of instructions could be used. Mentioning intersection type could help to
distinguish the decision point as well.

This thesis should serve as a stepping stone for future works and research on instruction
generation in an enriched routing graph.
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Appendix A

Enum types

A Road type
• PRIMARY1

• SECONDARY2

• TERTIARY3

• SERVICE4

• RESIDENTIAL5

• PATH6

• TRACK7

• FOOTWAY8

• CROSSING9

• STEPS10

• CYCLEWAY11

• UNKNOWN12

1I. class roads
2II. class roads
3III. class roads
4generally for access to a building, service station, industrial estate, etc., or unclassified roads connecting

houses and buildings
5living streets (streets where is lowered allowed speed due to contact with pedestrians)
6narrow roads in the countryside, mostly unpaved
7wide roads in the countryside, mostly unpaved
8footway
9crossing

10stairs
11dedicated road/street for cyclists.
12uknown

47



48 Appendix A. Enum types

B Cycle infrastructure
• TRACK13

• ZONE14

• LANE15

• SHARROW16

• NONE17

C Surface
• UNKNOWN

• EXCELLENT18

• GOOD19

• BAD20

• HORRIBLE21

• IMPASSABLE22

13dedicated track for cyclists separated from car traffic
14pedestrian zone with allowed access by bike
15mandatory cycle lane
16advisory cycle lane
17no cycling infrastructure is present
18brand new asphalt
19old asphalt roads or concrete roads, or paving stones with very narrow gaps
20cobblestones with bigger gaps, not compacted unpaved roads
21roads hardly used for bicycle
22roads that should be used only as a last resort
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Images

A Routes

Figure B.1: Two consequent decision points
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Figure B.2: Distance instruction

Figure B.3: Continuation
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Figure B.4: Decision point caused by aggregated edges

Figure B.5: Similarity of roads
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Figure B.6: Route from 254753 to 1162412

Figure B.7: Route from 102401 to 117269



Appendix C

Little bit of linear algebra

Node can be represented as a point in space and edge is comprised as a sequence of
line segments. As coordinates are used latitude and longitude. In this paper, we work only
with vectors in two dimensions.

A Line segment
Line segment 1 is a part of a straight line that is bounded by two distinct end points,

and contains every point on the line that is between its endpoints. We define an opposite
line segment 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑙) to line segment 𝑙 = ( ⃗𝑠𝑡𝑎𝑟𝑡, ⃗𝑒𝑛𝑑) as:

𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑙) = ( ⃗𝑒𝑛𝑑, ⃗𝑠𝑡𝑎𝑟𝑡)

B Angles
B.1 Angle using dot product formula

To calculate cosine of angle between two vectors (�⃗�, �⃗�) we can use dot product formula 2:

cos 𝜃 = �⃗� · �⃗�

‖�⃗�‖·‖�⃗�‖

and then simply to get the angle use:

𝜃 = arccos �⃗� · �⃗�

‖�⃗�‖·‖�⃗�‖

B.2 Oriented angle between ingoing and outgoing vector

To determine oriented between ingoing vector �⃗� and outgoing vector �⃗� of some node
we can use law of cosines 3:

‖�⃗�‖= ‖⃗𝑏‖+‖�⃗�‖−2 · ‖�⃗�‖·‖⃗𝑏‖· cos 𝜃

, where vector �⃗� = �⃗� + �⃗�. To get the angle 𝜃 we use:

𝛼 = arccos(‖�⃗�‖2+‖⃗𝑏‖2−‖�⃗�‖2

2‖�⃗�‖‖⃗𝑏‖
)

1https://en.wikipedia.org/wiki/Line_segment
2https://en.wikipedia.org/wiki/Dot_product
3https://en.wikipedia.org/wiki/Law_of_cosines
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If the vector �⃗� is oriented to the right from the perspective of vector �⃗� then we choose
complementary angle 𝜃

′ = 360 − 𝜃.

B.3 Perpendicular vector
Vector �⃗� is perpendicular to vector �⃗� if �⃗� · �⃗� = 0. In two dimensions are two perpen-

dicular vectors to �⃗� = (𝑥, 𝑦), first is �⃗� = (𝑥, −𝑦) and second is −�⃗�, because �⃗� · �⃗� = 0 and
�⃗� · −�⃗� = 0 for any number.

C Orientation
C.1 Using dot product

We can use dot product to separate space to 2 parts, one above and one bellow hyper-
plane determined by it’s normal vector �⃗�. Let

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = �⃗� · 𝑝

where 𝑝 is a point in space. If the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 > 0 then the point 𝑝 is above the hyperplane,
if the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 < 0 then the point 𝑝 is bellow the hyperplane, otherwise it lies on the
hyperplane.

Definition

We define function:

𝑖𝑠𝐴𝑏𝑜𝑣𝑒( ⃗𝑣𝑒𝑐𝑡𝑜𝑟, ⃗𝑝𝑜𝑖𝑛𝑡) = ⃗𝑣𝑒𝑐𝑡𝑜𝑟 · ⃗𝑝𝑜𝑖𝑛𝑡 > 0

where ⃗𝑣𝑒𝑐𝑡𝑜𝑟 is normal vector to hyperplane and ⃗𝑝𝑜𝑖𝑛𝑡 is point in space.

C.2 Using determinant
Because we use 2 dimensions (longitude and latitude), we can use the determinant 4

of two vectors to tell if one vector is on the left/right of the other one. The determinant
gives the signed n-dimensional volume of n-dimensional parallelotope. In two dimensions
the sigh represent orientation between these vectors. Let

det 𝑀 = det
⃒⃒⃒⃗
𝑎 �⃗�

⃒⃒⃒
If det 𝑀 > 0 then the vector �⃗� is on the right of the vector �⃗�, if det 𝑀 < 0 then the vector
�⃗� is on the left of the vector �⃗�, otherwise vectors �⃗� �⃗� have same orientation.

Definitions

We define functions:

𝑖𝑠𝑂𝑛𝑅𝑖𝑔ℎ𝑡( ⃗𝑣𝑒𝑐𝑡𝑜𝑟, ⃗𝑝𝑜𝑖𝑛𝑡) = det
⃒⃒⃒

⃗𝑣𝑒𝑐𝑡𝑜𝑟 ⃗𝑝𝑜𝑖𝑛𝑡
⃒⃒⃒

> 0

and
𝑖𝑠𝑂𝑛𝐿𝑒𝑓𝑡( ⃗𝑣𝑒𝑐𝑡𝑜𝑟, ⃗𝑝𝑜𝑖𝑛𝑡) = det

⃒⃒⃒
⃗𝑣𝑒𝑐𝑡𝑜𝑟 ⃗𝑝𝑜𝑖𝑛𝑡

⃒⃒⃒
< 0

C.3 Perpendicular line sections
In two-dimensional space we can get 2 perpendicular line sections with same starting

point and same size. Let’s have line segment 𝑙 with start �⃗� and direction 𝑑. Set of perpen-
dicular line segments is 𝑝𝑒𝑟𝑝 = {(�⃗�′

, 𝑑
′)|�⃗�′ = �⃗� ∧ 𝑑

′ · 𝑑 = 0 ∧ ‖𝑑‖= ‖𝑑
′‖} We define:

4https://en.wikipedia.org/wiki/Determinant

https://en.wikipedia.org/wiki/Determinant
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Perpendicular line 𝑙 = (�⃗�′
, 𝑑

′) is perpendicular left if 𝑙 ∈ 𝑝𝑒𝑟𝑝 and 𝑖𝑠𝑂𝑛𝐿𝑒𝑓𝑡(𝑑, 𝑑
′).

Perpendicular line 𝑙 = (�⃗�′
, 𝑑

′) is perpendicular right if 𝑙 ∈ 𝑝𝑒𝑟𝑝 and 𝑖𝑠𝑂𝑛𝑅𝑖𝑔ℎ𝑡(𝑑, 𝑑
′).

D Computation with line segment
We can use formulas in C with line segments with small adjustments. Line segment

has a start point �⃗� and an end point �⃗� and the direction 𝑑 = �⃗� − �⃗�. If we use the direction
𝑑 and subtract vector �⃗� from other vectors in coordinate space then we can use formulas
in C.

Definition

Let’s have line segment 𝑙 = (�⃗�, �⃗�) and point 𝑝. Direction 𝑑 = �⃗� − �⃗�, opposite direction
�⃗� = �⃗� − �⃗�, point �⃗� = 𝑝 − �⃗� and point �⃗� = 𝑝 − �⃗�. We define functions:

𝑖𝑠𝑂𝑛𝑅𝑖𝑔ℎ𝑡(𝑙, 𝑝) = det
⃒⃒⃒
𝑑 ⃗⃗𝑛

⃒⃒⃒
> 0

𝑖𝑠𝑂𝑛𝐿𝑒𝑓𝑡(𝑙, 𝑝) = det
⃒⃒⃒
𝑑 ⃗⃗𝑛

⃒⃒⃒
< 0

𝑖𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑙, 𝑝) = 𝑖𝑠𝐴𝑏𝑜𝑣𝑒(𝑑, �⃗�) ∧ 𝑖𝑠𝐴𝑏𝑜𝑣𝑒(�⃗�, �⃗�)

E Projection
E.1 Linear space

Orthogonal projection 5 of �⃗� onto the line spanned by a nonzero �⃗� is:

𝑝𝑟𝑜𝑗�⃗�(�⃗�) = �⃗� · �⃗�

�⃗� · �⃗�
· �⃗�

E.2 Affine space
Orthogonal projection of �⃗� onto the line spanned by a nonzero �⃗� shifted by point 𝑝 is:

𝑝𝑟𝑜𝑗�⃗�(�⃗� − 𝑝)

F Intersection
F.1 Intersection of two two-dimensional lines

To find intersection of two affine spaces we can use GEM 6. Let 𝑙1 be a parametric line
with shift 𝑝1 and direction 𝑑1 and 𝑙2 be a parametric line with shift 𝑝2 and direction 𝑑2.
We try want to find coefficients (𝑘1, 𝑘2) of linear combination 7 of vectors 𝑑1 and 𝑑2 which
equals to vector �⃗� = 𝑝2 − 𝑝1. Then the intersection is 𝑘1 · 𝑑1 + 𝑝1.

F.2 Getting part of line segment above affine hyperplane
To get part of Line segment we newline to take a look at the end points: star point �⃗�

and end point �⃗�.

• If both points are above or on the affine hyperplane, whole line segment is above
and result is original line segment.

5https://textbooks.math.gatech.edu/ila/projections.html
6https://en.wikipedia.org/wiki/Gaussian_elimination
7https://en.wikipedia.org/wiki/Linear_combination

https://textbooks.math.gatech.edu/ila/projections.html
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Linear_combination
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• If both points are bellow , whole line segment is bellow and result is ∅.

• If one point is above, we can calculate Intersection of two two-dimensional lines �⃗�.

– If start is above, we get: Line segment with original start and end �⃗�

– If end is above, we get: Line segment with start �⃗� and original end

F.3 Strip intersection
We define stripIntersection(strip, lineSegment), where both parameters are line

segments and is result of F.2 between two affine hyperplanes defined by strip and oppo-
site(strip).

G Distance of two points on a sphere
To get distance of two points using coordinates on a sphere we can use Haversine

formula 8. First point 𝑝1 = (𝑙𝑎𝑡1, 𝑙𝑜𝑛1) second point 𝑝2 = (𝑙𝑎𝑡2, 𝑙𝑜𝑛2). After reforming
Haversine formula we get that distance

𝑑(𝑣𝑒𝑐𝑝1, 𝑣𝑒𝑐𝑝2) = 2 · 𝑟 · arcsin
√︃

sin2( 𝑙𝑎𝑡2 − 𝑙𝑎𝑡1
2 ) + cos(𝑙𝑎𝑡1) · cos(𝑙𝑎𝑡2) · sin2( 𝑙𝑜𝑛2 − 𝑙𝑜𝑛1

2 )

where r is radius of earth and equals 6378.

8https://en.wikipedia.org/wiki/Haversine_formula

https://en.wikipedia.org/wiki/Haversine_formula
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